

ALG/215 Antistatic Wipe

Boeing Distribution Services, Inc.

Chemwatch: **5344-70** Version No: **2.1.1.1**

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 2

Issue Date: 12/03/2019 Print Date: 13/03/2019 L.GHS.USA.EN

SECTION 1 IDENTIFICATION

Product Identifier

Product name	ALG/215 Antistatic Wipe
Synonyms	Not Available
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Relevant identified uses	Use according to manufacturer's directions. Washing and cleaning products (including solvent based products).
--------------------------	--

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	Boeing Distribution Services, Inc.	
Address	617 N Great Southwest Pkwy TX 75050 United States	
Telephone	817-633-8377	
Fax	Not Available	
Website	Not Available	
Email	sds.support@boeingdistribution.com	

Emergency phone number

Association / Organisation	Not Available
Emergency telephone numbers	817-633-8377
Other emergency telephone numbers	Not Available

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification Flammable Liquid Category 4, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects)

Label elements

Hazard pictogram(s)

SIGNAL WORD WARNING

Hazard statement(s)

H227	Combustible liquid.
H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.

Hazard(s) not otherwise classified

Not Applicable

Issue Date: 12/03/2019 Chemwatch: 5344-70 Page 2 of 12 Version No: 2.1.1.1 Print Date: 13/03/2019

ALG/215 Antistatic Wipe

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.	
P271	Use only outdoors or in a well-ventilated area.	
P261	Avoid breathing mist/vapours/spray.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s) Response

P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.	
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P337+P313	P337+P313 If eye irritation persists: Get medical advice/attention.	
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.		

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
67-63-0	10-30	<u>isopropanol</u>
34590-94-8	1-10	dipropylene glycol monomethyl ether

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	# If swallowed do NOT induce vomiting. # If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. # Observe the patient carefully. # Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. # Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. # Seek medical advice.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media

Chemwatch: 5344-70 Page 3 of 12

Version No: 2.1.1.1 ALG/215 Antistatic Wipe Issue Date: 12/03/2019 Print Date: 13/03/2019

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit)
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Special protective equipment and precautions for fire-fighters

Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course.

Use water delivered as a fine spray to control fire and cool adjacent area.

Fire Fighting Avoid spraying water onto liquid pools.

DO NOT approach containers suspected to be hot.

Cool fire exposed containers with water spray from a protected location.

If safe to do so, remove containers from path of fire.

Slight fire hazard when exposed to heat or flame.

Heating may cause expansion or decomposition leading to violent rupture of containers.

On combustion, may emit toxic fumes of carbon monoxide (CO).

May emit acrid smoke.

Fire/Explosion Hazard

Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2)

other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

May emit corrosive fumes

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
	Moderate hazard. © Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard.

- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- **Major Spills**
- Increase ventilation. Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

DO NOT enter confined spaces until atmosphere has been checked

- Safe handling
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.

ALG/215 Antistatic Wipe

Issue Date: 12/03/2019
Print Date: 13/03/2019

Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. Check for bulging containers. Vent periodically Always release caps or seals slowly to ensure slow dissipation of vapours Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Other information Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. 	
Storage incompatibility	Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.	

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

Version No: 2.1.1.1

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US NIOSH Recommended Exposure Limits (RELs)	isopropanol	Dimethyl carbinol, IPA, Isopropanol, 2-Propanol, sec-Propyl alcohol, Rubbing alcohol	400 ppm / 980 mg/m3	1225 mg/m3 / 500 ppm	Not Available Not Available	
US ACGIH Threshold Limit Values (TLV)	isopropanol	2-Propanol	200 ppm	400 ppm	Not Available	TLV® Basis: Eye & URT irr; CNS impair; BEI
US OSHA Permissible Exposure Levels (PELs) - Table Z1	isopropanol	Isopropyl alcohol	400 ppm / 980 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	dipropylene glycol monomethyl ether	Dipropylene glycol monomethyl ether, Dowanol® 50B	100 ppm / 600 mg/m3	900 mg/m3 / 150 ppm	Not Available	[skin]
US ACGIH Threshold Limit Values (TLV)	dipropylene glycol monomethyl ether	(2-Methoxymethylethoxy)propanol	100 ppm	150 ppm	Not Available	TLV® Basis: Eye & URT irr; CNS impair
US OSHA Permissible Exposure Levels (PELs) - Table Z1	dipropylene glycol monomethyl ether	Dipropylene glycol methyl ether	100 ppm / 600 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
isopropanol	Isopropyl alcohol	400 ppm	2000 ppm	12000 ppm
dipropylene glycol monomethyl ether	Dipropylene glycol methyl ether	150 ppm	1700 ppm	9900 ppm

Ingredient	Original IDLH	Revised IDLH
isopropanol	2,000 ppm	Not Available
dipropylene glycol monomethyl ether	600 ppm	Not Available

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)

Chemwatch: 5344-70 Page 5 of 12 Issue Date: 12/03/2019
Version No: 2.1.1.1 Print Date: 13/03/2019

ALG/215 Antistatic Wipe

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 t/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).

2.5-10 m/s (500-2000 t/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shields

- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
 - chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term

Hands/feet protection

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

 $Note: Depending \ on \ the \ activity \ being \ conducted, \ gloves \ of \ varying \ thickness \ may \ be \ required \ for \ specific \ tasks. \ For \ example:$

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Overalls.P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eve wash unit.

Recommended material(s)

Continued...

GLOVE SELECTION INDEX

Version No: 2.1.1.1

ALG/215 Antistatic Wipe

Issue Date: 12/03/2019
Print Date: 13/03/2019

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

192397ITL ALG/215 Antistatic Wipe

Material	СРІ
NEOPRENE	A
NITRILE	A
NITRILE+PVC	A
PE/EVAL/PE	A
PVC	В
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS / Class 1 P2	-	AX-PAPR-AUS / Class 1 P2
up to 50 x ES	Air-line*	-	-
up to 100 x ES	-	AX-3 P2	-
100+ x ES	-	Air-line**	-

* - Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Colourless non-viscous liquid with characteristic odour; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	9-10	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	>35	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	<93	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Chemwatch: 5344-70 Page 7 of 12 Issue Date: 12/03/2019
Version No: 2.1.1.1 Print Date: 13/03/2019

ALG/215 Antistatic Wipe

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertice Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhaled Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals. following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Ingestion Accidental ingestion of the material may be damaging to the health of the individual Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either: produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. **Skin Contact** Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eve Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical Chronic systems TOXICITY IRRITATION 192397ITL ALG/215 Antistatic Wipe Not Available Not Available IRRITATION TOXICITY dermal (rat) LD50: =12800 mg/kg^[2] Eye (rabbit): 10 mg - moderate Inhalation (rat) LC50: 72.6 mg/l/4h^[2] Eye (rabbit): 100 mg - SEVERE isopropanol Oral (rat) LD50: =4396 mg/kg^[2] Eve (rabbit): 100mg/24hr-moderate Skin (rabbit): 500 mg - mild **TOXICITY IRRITATION** Dermal (rabbit) LD50: 9500 mg/kg^[2] Eye (human): 8 mg - mild dipropylene glycol monomethyl Oral (rat) LD50: 5130 mg/kg^[2] Eye (rabbit): 500 mg/24hr - mild ether Skin (rabbit): 238 mg - mild Skin (rabbit): 500 mg (open)-mild

For isopropanol (IPA):

Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat.

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified

Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred.

Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified

from these studies were to the kidney.

ISOPROPANOL

Leaend:

Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful.

Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights. but no teratogenicity

Genotoxicity: All genotoxicity assays reported for isopropanol have been negative

data extracted from RTECS - Register of Toxic Effect of chemical Substances

Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment

Page 8 of 12 ALG/215 Antistatic Wipe

Issue Date: 12/03/2019 Print Date: 13/03/2019

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

DIPROPYLENE GLYCOL MONOMETHYL ETHER

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating

None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health. In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPnB, DPnB and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

ISOPROPANOL & DIPROPYLENE GLYCOL MONOMETHYL ETHER

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

💢 - Data either not available or does not fill the criteria for classification

🚽 – Data available to make classification

ALG/215 Antistatic Wipe

Toxicity

192397ITL ALG/215 Antistatic Wipe	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	9-640mg/L	2
	EC50	48	Crustacea	12500mg/L	5
isopropanol	EC50	96	Algae or other aquatic plants	993.232mg/L	3
	EC0	24	Crustacea	5-102mg/L	2
	NOEC	5760	Fish	0.02mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>1-930mg/L	2
dipropylene glycol monomethyl ether	EC50	48	Crustacea	1-930mg/L	2
	EC50	72	Algae or other aquatic plants	6-999mg/L	2
	NOEC	528	Crustacea	>=0.5mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)
dipropylene glycol monomethyl ether	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
isopropanol	LOW (LogKOW = 0.05)
dipropylene glycol monomethyl ether	LOW (BCF = 100)

Mobility in soil

Ingredient	Mobility
isopropanol	HIGH (KOC = 1.06)
dipropylene glycol monomethyl ether	LOW (KOC = 10)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Product / Packaging disposal

 Where in doubt contact the responsible authority.
 - Recycle wherever possible or consult manufacturer for recycling options.
 - Consult State Land Waste Authority for disposal.
 - Bury or incinerate residue at an approved site.
 - Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

NO

Not Applicable

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Issue Date: 12/03/2019 Print Date: 13/03/2019

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ISOPROPANOL(67-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 18: List of products to which the Code does not apply

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances

IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

US - Alaska Limits for Air Contaminants

 ${\it US-California\ OEHHA/ARB-Acute\ Reference\ Exposure\ Levels\ and\ Target\ Organs\ (RELs)}$

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Idaho Toxic Air Pollutants Non- Carcinogenic Increments - Occupational Exposure Limits

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - Oregon Permissible Exposure Limits (Z-1)
US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (Spanish)

US ACGIH Threshold Limit Values (TLV)

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US Department of Transportation (DOT), Hazardous Material Table

US DOE Temporary Emergency Exposure Limits (TEELs)

US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes

US EPCRA Section 313 Chemical List

US NIOSH Recommended Exposure Limits (RELs)

US NIOSH Recommended Exposure Limits (RELs) (Spanish)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US OSHA Permissible Exposure Limits - Annotated Table Z-1 (Spanish)

US Postal Service (USPS) Hazardous Materials Table: Postal Service Mailability Guide

US Postal Service (USPS) Numerical Listing of Proper Shipping Names by Identification (ID) Number

US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US TSCA Chemical Substance Inventory - Interim List of Active Substances

US TSCA Section 4/12 (b) - Sunset Dates/Status

DIPROPYLENE GLYCOL MONOMETHYL ETHER(34590-94-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

US - Alaska Limits for Air Contaminants

US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Idaho Toxic Air Pollutants Non- Carcinogenic Increments - Occupational Exposure Limits

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - Oregon Permissible Exposure Limits (Z-1)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

 $\label{thm:continuous} \textbf{US-Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants}$

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

 $\ensuremath{\mathsf{US}}$ - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (Spanish)

US ACGIH Threshold Limit Values (TLV)

US Clean Air Act - Hazardous Air Pollutants

US DOE Temporary Emergency Exposure Limits (TEELs)

US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes

US EPCRA Section 313 Chemical List

US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule

US NIOSH Recommended Exposure Limits (RELs)

US NIOSH Recommended Exposure Limits (RELs) (Spanish)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US OSHA Permissible Exposure Limits - Annotated Table Z-1 (Spanish)

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US TSCA Chemical Substance Inventory - Interim List of Active Substances

US TSCA Section 4/12 (b) - Sunset Dates/Status

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Flammable (Gases, Aerosols, Liquids, or Solids)	
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	

Chemwatch: 5344-70 Page 11 of 12 Issue Date: 12/03/2019
Version No: 2.1.1.1 Print Date: 13/03/2019

ALG/215 Antistatic Wipe

No Organic Peroxide Self-reactive No In contact with water emits flammable gas No Combustible Dust No Carcinogenicity No No Acute toxicity (any route of exposure) Reproductive toxicity No Skin Corrosion or Irritation No Respiratory or Skin Sensitization No Serious eye damage or eye irritation Yes Specific target organ toxicity (single or repeated exposure) Yes Aspiration Hazard No Germ cell mutagenicity No Simple Asphyxiant No

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

None Reported

State Regulations

US. CALIFORNIA PROPOSITION 65

None Reported

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (dipropylene glycol monomethyl ether; isopropanol)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Legend:	Yes = All ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	12/03/2019
Initial Date	12/03/2019

Other information

Ingredients with multiple cas numbers

Name	CAS No
dipropylene glycol monomethyl ether	34590-94-8, 12002-25-4, 112388-78-0, 104512-57-4, 83730-60-3, 112-28-7, 13429-07-7, 20324-32-7, 13588-28-8, 55956-21-3

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

 ${\sf PC-STEL} : {\sf Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

Chemwatch: 5344-70 Page **12** of **12** Issue Date: 12/03/2019 Version No: 2.1.1.1 Print Date: 13/03/2019

ALG/215 Antistatic Wipe

BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.